Assessing the contribution of spectral cues to recognition of frequency-lowered consonants

Methods

Listeners match frequency-lowered fricatives across vowel contexts. Three frequency-lowering treatments differ in degree of spectral contrast.

31-2AFC task

Reference interval contains the target consonant (e.g. /θ/). Target interval contains the same consonant, but a different vowel from the reference (e.g. /aθ/).

Materials

- 4 frequency-lowering consonants [F, M, S, SH]
- 2 subjects (male and female)
- 2 weeks (1st, 2nd)

Presentation

- Headphone presentation (HD600)
- Speech-shaped noise at 20 dB SNR
- 60 dB SPL presentation in test ear
- Bandpass filtered via Hi-Q®

Training*

- 2 practice trials per session
- 2 trials (44 trials per test 4 days per week)
- 2 listeners listened to training each session
- Practice trials were designed to minimize any effects of training on performance
- Listeners were trained on the consonants before the start of the experiment

Participant

Nine participants, ages 68 to 87 (avg 74.9) years

Frequency lowering candidates

- Threshold = 45 dB HL above 4 kHz
- Threshold = 20 dB below 1.5 kHz
- Auditory angle = 35 kHz for tones in at least one ear

Participants

- Nine participants, ages 68 to 87 (avg 74.9) years
- Frequency lowering candidates
- Thresholds = 45 dB HL above 4 kHz
- Thresholds = 20 dB below 1.5 kHz
- Auditory angle = 35 kHz for tones in at least one ear

Treated in better ear if both ears meet the criteria.

Treatments

- Oracle labeling
- Estimate power spectrum in 125 ms frames
- Compute power in one octave neighborhood of two peaks
- Synthesize narrowband noise components

One-fixed frequency component

- Removes spectral cues

Two-variable frequency components

- Compares spectral cues

Two fixed frequency components, with classification

- One or two components according to phoneme class
- Exaggerates spectral cues

One component

- Two components

Two w/classification

Reference interval contains the target consonant (e.g. /θ/).

Overall Performance

Performance under all treatments (including no-treatment) was highly variable within and between subjects.

Data to show no general benefit of any of the treatments relative to no-treatment...

...but this is not the only measure of benefit due to frequency lowering.

Most subjects showed substantial benefit in a frequency detection task.

Effect of spectral cue preservation

Effect of preserving or enhancing spectral cues was highly variable within and between subjects.

Statistically significant differences among treatments (based on 95% Bayesian confidence intervals) were only observed for a few subjects and consonants.

Treatments preserving or enhancing spectral cues produce fewer confusions for consonant pairs that include /θ/ than treatments that remove spectral cues.

Results

5 subjects completed all four treatments (data collection in-progress)

Data were analyzed using a hierarchical Bayesian model[2].

No effect of training - data shown is collapsed across sessions.

Hierarchical Bayesian

The latent ability variable, \(x \), was modeled as a linear function of the session number.

All terms modeled using mixed random variables, with means and variances assigned Gaussian and half-t priors, respectively, and learned from the data.

The authors gratefully acknowledge the generous assistance of Sandy Jobes, and of the participants in this study.

The authors gratefully acknowledge the generous assistance of Sandy Jobes, and of the participants in this study.