Introduction

- Established practice and previous literature impose a 10 msec limit on hearing-aid throughput delay (Herbig & Chalupper 2010).
- Larger delays are objectionable due to interaction between amplified and direct acoustic paths.
- The delay limit severely impacts the amount of processing that can take place in a hearing aid.
- Previous studies looked at the effect of delay in laboratory conditions using a high signal-to-noise ratio.
- The current study tests the validity of this delay limit under noisy, real-world listening conditions.

Background

- Combinations of acoustic paths with different delays contribute to (in)tolerances.
- Tolerable delays during speech production (Stone & Moore, 2001)
 - 14-30 msec
 - Acclimatization is a factor
- Tolerable delays with open fittings (Stone et al., 2008)
 - As low as 5-6 msec
 - Hearing threshold and direct-to-amplified path ratio are factors
- Common practice: limit overall delay to 10 msec
- Limits constrain signal processing capabilities:
 - Number of frequency bands or bins
 - Signal processing (beamforming, noise reduction)
 - Binaural processing (beamformer)
 - Remote microphone communication

Methods

Research Questions:
When comparing hearing-aid throughput delays of 4.5, 10, 15 and 20 msec in background noise levels greater than 70 dB SPL:
1. Are normally hearing listeners able to detect differences between the delays?
2. Do normally hearing listeners find the delays acceptable?

Participants:
Ten normally hearing listeners compared processing delays ranging from 4.5 to 20 msec under conditions where the background noise level was 70 dB SPL or greater

Hearing Aid Devices:
- Starkey Xino RIC devices with firmware that allows throughput delay to be parameterized.
- Receivers were fit with non-occluding earbuds.
- Gain prescription was best-fit with Starkey eStat for a 30-dB flat hearing loss.
- Four memories were programmed identically except for throughput delay:
 - Memory 1 contained the standard 4.5 msec delay
 - Memories 2-3 contained randomized delays of 10, 15 and 20 msec

Procedure:
- Participants listened to Memory 1 (4.5 msec delay) in all normal/quiet listening conditions.
- Participants sought out noisy situations (crowds, restaurants, malls, etc.).
- Noise level was assessed using a calibrated sound meter app on a hand-held device.
- Participants compared Memories 2-4 to Memory 1 in noisy situations while listening to and perceiving environmental sounds, speech of others and their own voice.
- Participants logged perceived differences and acceptability of each memory in each listening situation.

Results

- Ten participants reported on 104 listening trials.
- Background noise levels ranged from 65-95 dB SPL
- Four of ten participants perceived no difference across all delays.
- General differences were observed in 33/104 trials (6/10 participants) for delays ≥ 10 msec:
 - 9(4) @ 10 msec;
 - 9(5) @ 15 msec;
 - 15(6) @ 20 msec
- Qualitative reports of sound quality included descriptions of phasing, reverber, echo, “stretched-out”
- Own-voice differences were observed in 12/104 trials (5/10 participants) for delays ≥ 10 msec:
 - 3(2) @ 10 msec;
 - 1(1) @ 15 msec;
 - 8(4) @ 20 msec

- Nine of ten participants reported all latencies as acceptable in at least one trial.
- All latencies were reported as acceptable at noise levels > 80 dB SPL
- Unacceptable delays were reported in 6/104 trials (3/10 participants):
 - 1(1) @ 10 msec;
 - 3(1) @ 15 msec;
 - 1(2) @ 20 msec

Discussion

- Other factors affected by delay:
 - Audio-visual asynchrony
 - Lip-readers tolerate up to ~40 msec delay.
 - Tactile-acoustic interaction
 - Impulsive sounds from cutlery, keyboards, etc. are impacted by hearing-aid throughput delay.

- Laboratory control vs real-world conditions:
 - Difficult to control for sound level in real-world environment.
 - Difficult to recreate true noise environment and communication scenarios in laboratory environment.

- Other factors may affect perception and acceptable throughput delay:
 - Hearing impairment
 - Acceptance of a particular delay may depend on conditions of improved speech intelligibility.

Summary

- Our data suggests that listeners can tolerate longer than established hearing-aid processing delays under noisy listening conditions.
- Some listeners could detect differences in throughput delay but most found delays up to our maximum-tested 20 msec to be acceptable in noise.
- Future work will examine the effect of hearing impairment and trade-offs with SNR improvements.

References

Acknowledgments

Thanks to Bill Woods and his Marks for help with experiment setup and design. Thanks to Jason Farnan for comments on an earlier version of this poster.